If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81x^2+117x+40=0
a = 81; b = 117; c = +40;
Δ = b2-4ac
Δ = 1172-4·81·40
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(117)-27}{2*81}=\frac{-144}{162} =-8/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(117)+27}{2*81}=\frac{-90}{162} =-5/9 $
| 9x^2+88x+63=0 | | .4x+1=2x+7 | | 3e=27= | | 4(y+6)=7 | | 2(X+6)=3y | | 50000=1.25^x | | 53=-16t^2+81t+2 | | 22-4f=9 | | 6x^2-50x-76=0 | | 2u+4=7 | | -h+6/2=10 | | -2n/3-7=-13 | | T+1.2+t+1.2=3.6 | | 6x-3x-12=0 | | 4x+(-16)=12 | | 19-2x-(6-4)(7x-2)+3x=0 | | -36=-9l | | -6y/5=-48 | | 9-4n/7=5 | | B+g=45 | | 11=i/8 | | 1/3=12/x-8 | | 7w/10=7 | | 14x+x^2=16 | | -3a-7=-19 | | -3y+(-6)=3 | | 19+4=9x-7x-x | | 10v/4=3v+34 | | -3y(-4)=34 | | 4c=3(2-5)+7 | | 6a-7=65 | | 1/2(180-x)=2(90-x)-27 |